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SECTION I

INTRODUCTION

Physics International Company (PI) participated in the

Defense Nuclear Agency's Shock Block Development Program. The

objective of the program is to generate in water a planar shock

wave that has the characteristics of the nuclear-generated pulse

shown in Figure 1.1. Previous tests using a planar high explo-

sive (Primacord*) source in this program are described in Refer-

ences 1 and 2. The purpose of the PI effort was to investigate

the use of propellants to improve the performance of underwater

shock simulators fielded by the Underwater Explosions Research

Division (UERD) of the David W. Taylor Naval Ship Research and

Development Center, Portsmouth, Virginia. Limitations on the

simulation design include a maximum charge array of 7.3 m x 7.3 m

(24 ft x 24 ft) and a high explosive weight limit of 6P kg (150

lb). Results of previous tests have shown that a - 0.1 ms pulse

risetime can be achieved using the Primacord arrays, but the

total measured pulse duration has been less than 1 ms (Refer-

ences 1 and 2).

Because the release of energy is much slower from propel-

lants than from high explosives, it was believed that propellants

could be used to obtain a longer duration. At the same time, it

was recognized that a fast risetime would be difficult to achieve

with propellants alone; therefore, efforts by PI centered on

*Manufactured by the Ensign Bickford Co., Simsbury, Connecticut.
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Figure 1.1 Pressure pulse in water typical of a nuclear
underwater shock wave, and desired to be sim-
ulated with high explosive and/or propellant
planar sources in the Shock Block develoornent
program.
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combining well characterized gun propellants with unconventional,

fast-burning propellants, or high explosives, and on improving

high explosive (HE) designs. Both theoretical efforts, in the

form of one-dimensional (1D) and two-dimensional (2D)

calculations, and small-scale experiments were performed.

Included was a theoretical analysis of a Shock Block array

designed by Physics Applications, Inc. (PAI), and tested by UERD

(References 3 and 4). Test results indicated however, that this

design (the most successful to date in producing the desired

pressure pulse) resulted in a nonplanar pressure wave which had

numerous undesirable pressure oscillations superimposed.

This report summarizes the results of the above investi-

gations. Recommendations are made in the form of general designs

for Shock Block arrays which, if engineered and tested, might

considerably improve planar charge performance in the future.

9



SECTION 2

PROPELLANT SURVEY AND INITIAL THEORETICAL INVESTIGATION

Initial efforts concentrated on surveying gun propellants to

see whether any of them could produce the desired 0.1 ms risetime

at the required low loading densities.* The maximum pressure

desired, 20.4 MPa (3000 psi), dictated that the total propellant

loading density be on the order of 0.1 g/cm 3 or less. Gun

propellants were closely examined because they typically have

faster and more controllable burn rates, and because several have

been well-characterized (Reference 5).

Table 2.1 summarizes the important characteristics of four

of the fastest burning gun propellants. The propellant burn

rate, R (mm/s), is typically of the following form:

R = a + b pn (2.1)

where P is pressure (MPa). The burn rate is generally independ-

ent of the geometry of the propellant grain. The energy release,

and hence the risetime, is, however, dependent on both R and the

geometry. An estimate of the minimum (closed-volume) risetime

attainable from 0 to 20.4 MPa (0-3000 psi) can be obtained by

*The loading density is defined as the propellant mass divided by
the initial volume of the test assembly.

10
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calculating the burn rate for a pressure of 10.2 MPa (1500 psi)

and dividing it into the propellant web size. (The propellant

web size is the shortest distance normal to a burning surface

that the grain burns before it loses its structural integrity.)

As can be seen from Table 2.1, M8 U.S. Army mortar propellant

gives the shortest risetime in a closed volume.

The underwater system is not, however, a closed volume,

since the propellant can expand into the water. A calculation

was performed using the PISCES 2DELK finite difference computer

code (Reference 6) in 1D planar symmetry. A 3-cm-thick slab

representing a dual propellant source, M8 mortar propellant at a

loading density of 0.0256 g/cm 3 and SPDN U.S. Navy gun propellant

at a loading density of 0.028 g/cm 3 was used. The propellant

mixture was burned usinq the propellant burn routine previously

programmed for PISCES 2DELK (Reference 7). This source was

allowed to expand into 10 m of water. The pressure history de-

veloped in the source cavity is compared with the desired wave

shape in Fiqure 2.1. A risetime of 2.5 to 3.0 ms to a pressure

of 20 MPa is calculated. This compares well with the closed

volume estimate given in Table 2.1 indicating that very little

expansion of the source region occurs during the risetime inter-

val.

Based on the above 1D calculation and analysis, pure conven-

tional qun propellant systems were not considered to be viable

candidates for improving the Shock Block simulation technique

because the desired fast risetime could not be produced.

A new, faster burning propellant, representative of a new

family of R&D propellants was seriously considered. This propel-

lant was developed for the U.S. Navy as an igniter material for

12
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Figure 2.1 Pressure histories in a 3-cm-thick slab propellant
source and in water from 1D calculation using M8
fast-burning propellant (loading density of
0.00256 g/cm 3 ) and SPDN slower-burning propellant
(loading density of 0.028 g/cm 3).
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Navy guns. Table 2.2 compares the propellant burn properties of

the R&D fast-burninq propellant No. 134520 with those of SPDN.

Of particular interest was the burn rate coefficient, B, and

pressure exponent, n. A 1D calculation similar to the one previ-

ously discussed was performed using the R&D propellant at a

loading density of 0.018 q/cm 3 . An acceptable risetime was cal-

culated, as is shown in Figure 2.2. The pressure decay after the

peak (20 MPa) is expected because all of the propellant is burned

at the time the peak pressure is reached. Addition of a small

amount of SPDN to the source region could hold the pressure more

constant at later times.

One reason this R&D propellant was a serious candidate as an

energy source was that it was designed to be an igniter material

for slower burning propellants. High explosives, detonating near

propellants, tend to fracture the propellant grains, causing them

to burn at a much faster rate than desired, or to not burn at

all. The use of the igniter propellant would solve the risetime

problem as well as the problem of how to ignite the slower burn-

ing propellant. However, because of the excessive cost of this

propellant, the Shock Block simulator designs using this propel-

lant were not pursued further in this investigation.

14



Table 2.2 Comparison of propellant burn properties
of R&D propellant 134520* with SPDN
conventional gun propellant.

Constant 134520** SPDN

Impetus, J/g, (ft-lb/lb) 1087.8 (364,128) 935 (312,980)

Grain density, q/cm 3  1.4-1.6 1.58

Covolume, n, cm3 /q 1.445 0.933

Mole weiqht of qases,
p, g/mole 15.0 23.1

Specific heat ratio 1.297 1.251

Burn rate coefficient,
B, mm/(s-MPan) 344.26 2.50

Burn rate pressure
exponent, n 1.66 0.70

' Manufactured --y-eledyne-McCormick-Selph, Hollister, California

**These properties are valid for low loading densities on the

order of 0.05 q/cm 3

15
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Figure 2.2 Pressure in propellant source region and in water
resulting from the burning of R & D propellant
No. 134520 at a loading density of 0.018 g/cm 3 in
slab symmetry 120 mesh (0.84 mm) grain size].
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SECTION 3

SUMMARY OF SMALL-SCALE TESTS PERFORMED TO INVESTIGATE
DUAL HIGH EXPLOSIVE-PROPELLANT INITIATION SYSTEMS

Since it appeared that dual propellant systems were either

technically unfeasible (because of the long risetime) or not cost

effective, HE-propellant systems were investigated. The HE could

be used to obtain the desired pressure level quickly, thereby

satisfying risetime requirements, and a propellant, or combina-

tion of propellants, could be used to maintain the desired pres-

sure level for several milliseconds.

That an HE-propellant system could theoretically deliver the

desired wave shape was shown with a 1D calculation. The 3-cm-

thick slab source region contained PETN explosive and a combina-

tion of propellants--Bullseye (fast burning pistol powder at a

loading density of 0.056 g/cm 3 ) and SPDN (at a loading density of

0.028 g/cm 3). The PETN was assumed to be completely burned, and
the detonation gases were spread out uniformly over the source

region at an initial pressure of 20 MPa (2940 psi). The calcu-

lational geometry is shown in Figure 3.1. Pressure histories

were obtained in the water 1.4 m (4.5 ft) from the charge and

within the source cavity. These computed pressure histories are

shown in Figure 3.2; both the pulse risetime and the pulse width

meet the desired specifications.

17
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Figure 3.2 Computed pressure histories in 3-cm-thick propellant-
HE slab arid in water in front of the slab.
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It must be noted that these ID calculations incorporate some

assumptions, which are enumerated and discussed below:

1. The shock effects of the HE detonation are ignored. The
rate of energy release of a propellant, equivalent to its
mass burn rate, is directly proportional to its surface
area. If high explosives are detonated in close proximity,
shock waves are likely to fracture the propellant, increas-
ing the total surface significantly. This in turn would
lead to unpredictable burn rates, a result that would mani-
fest itself in pressure-time curves more characteristic of
an HE detonation. Thus the propellants must be protected
from shock effects for the 1D calculation to be valid.
Also, HE shock effects might produce a sharp initial shock
into the water. This might cause the source cavity to
expand faster than desired, leading to faster attenuation of
the pressure in the source region.

2. Two- and three-dimensional effects are neglected. The
actual slab charge would not be infinite in extent; a
maximum size is about 7.3 m by 7.3 m (24 ft by 24 ft). The
1D calculations neglect charge edge effects and the effects
of the finite detonation velocity of the explosive.

Because of the encouraging theoretical results, small-scale,

closed-volume tests were conducted to investigate whether a HE/

propellant charge could be properly initiated. These experiments

were only a first step in developing a full Shock Block design

that could be tested by UERD, but a necessary first step. If

technical feasibility were not demonstrated, any further

development efforts would be precluded.

It was judged that a dual initiation system had the greatest

chance of succeeding. First, the propellant would be ignited;

after the propellant grains were burning and the pressure began

to increase, the HE would be detonated, instantaneously raising

the pressure to approximately 20 MPa. The dual initiation tests

were performed in a test assembly shown in Figure 3.3. HE and

20
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0 Figure 3.3 Test assembly for closed volume propellant and
HE-propellant initiation tests.
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propellant were inserted into the chamber as shown in Fig-

ure 3.4. The HE charge consisted of 1.13 m (3.7 ft) of

0.106 gm/cm (50 grain/ft) Primacord cut into four equal sections

and taped together. An RP-2 detonator was affixed to one end of

the strands, and the entire assembly was wrapped with two layers

of aluminum foil. Each of the two propellant assemblies

consisted of 5.5 g of SPDN and a S26C1 squib*. The volume of the

33
test chamber was 1795 cm 3 , so the propellant loading density was

0.006 g/cm3 . The expected maximum pressure in the tests was

20.4 MPa (3000 psi). This allowed the test chamber (Figure 3.3)

to be reused. Pressure within the chamber was monitored using a

PCB Model 102A pressure transducer.

Two tests of the above type were performed, one in which the

HE was detonated 0.2 ms after propellant ignition, the other,

0.6 ms after ignition. In both tests only the pressure resulting

from the HE detonation was recorded, although pressure was

monitored for 20 ms in the first test, and 50 ms in the second.

It was evident from these tests that the propellant was not

burning properly. The time for the propellant to begin to burn

over all the surfaces of the grains after initiation was much

longer than expected. The propellant grains may have been

seriously fractured by the HE detonation or the propellant simply

would not burn as anticipated at this low loading density.

To see whether the propellant was burning properly, an

additional series of tests was performed using only propellant.

The results of these tests, labeled 2-1 to 2-6, are summarized in

Table 3.1. Also summarized there are the results of the first two

*Manufactured by Hercules, Inc.
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tests. Although the SPDN loading was slightly higher in the

second series of tests (0.0077-0.008 g/cm 3 ), the expected maximum

pressure, 6.1 MPa (900 psi) was lower than in the first two tests

because no HE was used. In four of these tests, the expected

pressure was obtained. A typical waveform is shown in Fig-

ure 3.5. Although the maximum pressure and the waveshape were

found to be highly repeatable in these tests, the time from

initiation to maximum pressure varied greatly.

The above tests showed why the results of the first two

tests were not positive: the propellant was not burning

completely when the HE was detonated. Furthermore, the time

variation from initiation to the beginning of pressurization of.

the chamber (340-860 ms) was much longer than the propellant

pressure risetime (100 ms to one-half maximum pressure). This

variation ruled out dual initiation systems because in all proba-

bility the HE would not detonate at precisely the proper time.

Use of a pressure. switch could correct this problem, at least for

the small-scale tests, but still precluded the use of such a

system in a large-scale Shock Block test where multiple HE/

propellant sources would have to be used.
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Figure 3.5 Pressure vs. time for pure propellant
closed volume test 2-6 (100 ms/cm,
3 MPa/cm, grid spacing is 1 cm x 1 cm).
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4SECTION 4

EVALUATION OF A CHARGE DESIGN USING A
SLOW-BURNING PROPELLANT INITIALLY CONFINED

IN ALUMINUM TUBES

Concurrent with the work performed under this contract, a

Shock Block charge was designed by Physics Applications, Inc.

(Reference 3) and subsequently tested by UERD (Reference 4). The

charges consisted of an array of 19 mm (3/4 in.) diameter alu-

minum tubes filled with a powdered propellant. Up to 21 of these

tubes, 3.3 m (10 ft) long each, were emplaced in a planar array

using a 6.1 m x 6.1 m (20 ft x 20 ft) steel backing structure.

One experiment, consisting of five 1.8 m (6 ft) tubes, was em-

placed with no steel backing structure. A Primacord initiator

was used. Pressure was measured in the water 1.07 m (3.5 ft)

from the center of the array.

Results of the above series of tests are discussed in Refer-

ences 3 and 4. They can be summarized as follows: an acceptable

risetime was achieved, and a pressure pulse of the order of

3-5 MPa (440-735 psi) was maintained for 3.5 ms. A typical pres-

sure history is shown in Figure 4.1; numerous sharp oscillations

are superimposed on the underlying 3-5 MPa pressure pulse. Fur-

ther analysis of the data by UERD indicated that the pressure

wave was not planar.

An effort was made to evaluate the PAI design, in part, by

performing a two-dimensional calculation. The propellant charac-

teristics were obtained from PAI personnel. The propellant, when

confined in the aluminum tube, has a burn velocity along the tube
3of 0.3 m/ms (1.0 ft/ms). At an initial density of 1.3 g/cm , the
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Figure 4.1 Pressure vs. time in front of charqe sheet from UERD
Shot 9036, usinq PAI propellant desian (pressure gage
P2, data used with permission of fir. 3.D. Gordon, UERD).
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propellant pressure developed within the 17.3 mm (0.68 in.) i.d.

aluminum tube is 117 MPa (17,000 psi). The enerqy released is

3223 J/q (770 cal/q).

We attempted to determine whether this Shock Bilock desiqn

could be improved. Even with no steel backing plate, the problem

of calculating the pressure in the water from an array of tubular

qas sources is three-dimensional. It is possible to calculate

the pressure history from a single tube usinq axial symmetry,

however. Since the burn velocity of the propel lant in tthf tuf.-

(0.3 m/ms) is a factor of 5 less than the spe-ed of soun, in

water, the pressure field in the water surroundini tht. t ibe was

suspected to be highly two-dimensional. A calculation of the

burn of a sinqle tube in a water environment was warrante-d for

the above reason, and was performed.

Fiqure 4.2 shows the zoning for the 2-n calculation. The

propellant tube was assumed to have a radius of 0.864 cm (0.68 in

inside diameter). The aluminum tube was neqiected durinq the

propellant expansion phase following propellant burn. The tube

was not allowed to collapse if shocked by the water before the

propellant inside it had burned, however. The propellant was

burned in Laqranqian coordinates at a constant velocity of

0.305 m/ms. As the burned propellant expanded, it was allowed to

interact with the Eulerian water region using the coupled

Fulerian-Lagrangian logic of PISCES 2DELK (Reference 6).

The water had an initial density of 1.0 g/cm 3 and was des-

cribed using a Hugoniot relationship of the form

P = Ap + A 21i
2  (4.1)
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Figure 4.2 Zoning and material boundaries for PISCES
2DELK calculation of a single 1.83 m (6 ft)
PAI propellant tube burning in a water
environment (figure not to scale).
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where P is the pressure and P is the compressibility (u p/Po -l

where p is the current density and P0 = 1 g/cm
3 ). The constants

A1 (A1 = 2.188 GPa, A2 = 6.028 GPa) were set so that the initial

sound speed in water would be 1.48 m/ms. The propellant was

given the properties obtained from PAI, as discussed previously.

The 2D calculation was run to a total time of 1.5 ms. This

was only half the time required to burn the entire tube, but in

order to obtain sufficient resolution in the water during the

first half of the burn, it was not possible to calculate the

entire burn without an extensive rezone. Sufficient information

was obtained from the first (1.5 ms) run, so the second run was

not made.

Figure 4.3 presents pressure contours in the water for

pressures of 0.2 MPa (29.4 psi), 1.0 MPa (147 psi), 3 MPa

(440 psi), and 5 MPa (735 psi) at a time of 0.5 ms. At that

time, 0.16 m (0.5 ft) of the propellant tube had burned, the

position of the burn front is indicated on the figure. Because

of the higher sound speed in the water, all of these low pressure

contours extend almost spherically from the origin. It is easy
to see that, even at these low pressures, the pressure wave in

the water is not planar.

Of greater interest are higher pressures, at least on the

order of 10 MPa (1470 psi). Figure 4.4 gives pressure contours

for 3, 5, and 10 MPa at a time of 1.0 ms. The 10 MPa contour

encloses the burn front and extends behind it, but not all the

way to the original detonator position. Further analysis showed

that this closed pressure contour moves with the burn front at

approximately the burn velocity.
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Figure 4.3 Pressure contour plot from 2D cal-
culation of a PAI propellant tube
burning in a water environment at
a time of 0.5 ins.
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Figure 4.4 Pressure contour plot from 2D calculation
of a PAI propellant tube burning in a water
environment at a time of 1.0 mns.
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The pressure history in the water at the center of the 1.8 m

(6 ft) propellant tube, at a range of 0.67 m (2.2 ft) is shown in

Figure 4.5. A fast risetime (< 0.1 ms) is obtained, and the

pressure is maintained at a level of between 2 and 3 MPa to past

a time of 1.5 ms. The superimposed pressure spikes are due to

the burn of individual cells of the propellant tube, and changing

the zoning of the tube would probably change their amplitude and

frequency. In general, the waveform obtained is very similar to

that obtained in the experiment. Uneven tube rupturing could be

responsible for the pressure spikes in the data, but this may or

may not correspond to a discretely zoned, finite-difference

approximation to the propellant burn used here.

In conclusion, the 2D calculation gives a pressure pulse in

the water that closely resembles the experimental data, even

neglecting multiple tube effects. The pressure pulse calculated

is not planar, however. In fact, the higher the pressure level,

the less planar the wave appears. At pressures of highest inter-

est, those above 10 MPa (- 1500 psi), the wave is rouqhly spheri-

cal, and closely follows the burn front in the propellant.

An improvement could be made in this Shock Block design by

igniting the propellant at more locations along the tube. For

example, if the detonator spacing along the tube were 0.3 m

(1 ft), the time to burn the propellant between detonators would

be 0.5 ms; for a spacing of 0.15 m (6 in.), the time would be

0.25 ms. The latter time is on the order of the Primacord burn

time across a 3.0 m (10 ft) array (0.22 ms), assuming detonation

at the center of the array, so the pressure wave produced by such

a multipoint-detonated array is probably about as planar as one

could hope for.
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Figure 4.5 Calculated pressure history in water at
a range of 0.67 m (2 ft) from the center
of a sinale 1.8 m (6 ft) lona PAI propel-
lant tube.
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SECTION 5

CONSIDERATION OF HIGH EXPLOSIVE SOURCES
FROM A THEORETICAL VIEWPOINT

A two- to three-year investigation of high explosive sources

has been conducted by UERD in Shock Block Proqram. Various

explosive charge desiqns are discussed in References 1 and 2.

The charge designs are square, with maximum dimensions of 7.3 m x

7.3 m x 7.6-10.2 cm (24 ft x 24 ft x 3-5 in.). Support for the

charge is supplied by a steel plate, and a planar charqe is

simulated by closely spaced Primacord strands fastened to the

plate. Low density foam has been placed near the charge to

provide an expansion cavity. Total charge weights have ranqed

from a few kilograms to almost the 68 kq (150 lb) weight limit in

the turning basin of the Norfolk Naval Shipyard.

An additional effort was made to see whether these hiqh

explosive designs could be improved. The effort was prompted by

recognizing that the addition of a foam cavity around the

Primacord array made a substantial improvement in the shape of

the waveform. The pulse had an acceptable risetime and maximum

pressure level, and did not contain the high pressure spikes that

appeared in data obtained from most other designs. These designs

incorporating a foam cavity failed in that the pulse duration was

too short (Reference 2).

At least three physical processes that could cause the pres-

sure pulse to attenuate rapidly can be identified. These are

enumerated on the following page:
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1. Excessive motion of the water close to the charge array,

caused by the high initial shock pressure. The pressure
near the charge is attenuated rapidly by volume expansiGn.

2. Edge effects due to the finite size of the charge
arrays. Expansion of the cavity in the direction parallel
to the charqe array may be enhanced by rarefaction effects,
causing the pressure near the source to drop rapidly.

3. instabilities in the pressure field in front of the
charge array caused by the discrete explosive source and its
finite detonation time.

To a very hiqh degree, the pressure history near the source

region is directly transmitted to the water, delayed by the

transit time through the water. One can easily solve for the

velocity at which a "piston" must travel to produce a constant

pressure, P, of 20 MPa in the water in front of it (assuming

planar symmetry and no divergence effect-). IUsing the relation-

ship

P = Po cu, (5.1)

where for water po = 1 g/cm and c, the sound speed, is 1.5 m/ms,

the piston velocity, u, is calculated to be 13.3 m/s. The fast

risetime, however, requires that the piston begin moving

instantaneously; thus a shock wave will develop. A lD

calculation was performed to investigate an idealized case

corresponding to one of the Shock Block tests (UERD Test 8987),

using approximately 32 kq (70 ib) of 42.5 q/m (200 qrain/ft)

Primacord backed by a steel plate and tamped with 63.5 mm

(2.5 in.) of 0.032 g/cm 3 (216/ft 3 ) foam. The total design had

dimensions of 6.1 m x 6.1 m x 76.2 mm (20 ft x 20 ft x 3 in.).

In the calculation the energy released by the Primacord was

spread out evenly over the explosive and foam mass, resultinq in

a slab source region with an initial density of 0.113 g/cm 3 and
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pressure of 21.6 MPa (3175 psi). The equation of state for the

foam was obtained from Reference 8. This ID slab source was then

allowed to drive water in the calculation; the steel plate was

considered a rigid boundary. The pressure history in the water

is shown in Figure 5.1. An initial shock is seen, followed by a

slow pressure decay. At 2.5 ms the pressure is still 15 MPa

(2200 psi). The velocity at the source-water interface is found

to decay from 13.9 m/s at 20 us to 8.9 m/s at 2.5 ms. These

values agree well with the interface ("piston") velocity calcu-

lated by Equation 5.1.

This initial 1D calculation showed that there was enough

energy in the Primacord charge to almost deliver the desired

waveform in the water. However, the calculated pressure pulse

had a duration which was much longer than obtained in the experi-

ment. The physical processes discussed above must be responsible

for the marked departure of the measured waveforms (Reference 2)

from the idealized waveform.

A series of calculations was then performed to assess the

impact of the physical effects. In all calculations the

Primacord was assumed to be a continuous sheet with an areal

energy density approximately equal to a 32 kg (70 lb) Primacord

strand charge.* The thickness of the sheet was calculated to be

0.0451 cm; its areal density, 0.08 g/cm 2 (0.52 g/in.2). In the

first calculation, the charge was allowed to expand directly into

water, and the steel plate was assumed to be a rigid boundary.

Figure 5.2 shows the pressure history in the water from this

calculation. The initial pressure is very high, over 100 MPa

*This results in a strand spacing of 5.1 cm (2 in. ) across a
6.1 m x 6.1 m (20 ft x 20 ft) steel plate.
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Figure 5.1 Calculated pressure history in water 1.07 m

(3.5 ft) in front of an FE-foar' slab charae
6.35 cm (2.5 in.) thick where the KE enercoy is
initially spread out uniformly over the foam.
(The areal eneray density is equivalent to a
31.8 ko [70 lb] Primacord charae affixed to a
6.1 m x 6.1 m [20 ft x 20 ft] steel plate).
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Figure 5.2 Calculated pressure history in water
1.07 m (3.5 ft) in front of a HE slab
charge with an areal enery density
equivalent to a 31.8 kq (70 ib) Primacord
charqe affixed to a 6.1 m x 6.1 m (20 ft
x 20 ft) steel olate (no expansion cavity).
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(14.7 kpsi); the attenuation, very rapid. In the second calcula-

tion, (Figure 5.3) a 6.35 cm (2.5 in.) foam (Reference 8) expan-

sion cavity was placed between the explosive sheet and the water.

The pressure history from that calculation shows that the initial

maximum pressure is reduced to 60 MPa (8,820 psi), and that the

pressure is relatively constant at times beyond 1 ms at a level

of 12 MPa (1760 psi). The later-time oscillations in the pres-

sure amplitude are due to shock reverberation within the HE/foam

cavity. The results of these two calculations indicated that a

greater degree of decouplinq of the initial HE shock from the

water was required. The late-time pressures were not seriously

overestimated due to the assumption that the steel backing plate

acted as a rigid wall. Allowing the steel plate to expand in

another calculation lowered the late-time pressure by 10 percent,

but still did not allow the pressure to drop to zero, as the

experimental data indicate. This observation indicates that

charge edge effects and/or interface instabilities, including

cavitation, might be very important in reducing the late-time

pressure. The initial high pressure spike is also not seen in

the data, but the appropriate pressure gage on Shot 8987 was set

for a maximum pressure of 25 MPa. Thus it was probably unable to

record this high frequency pressure pulse.

Data from another test (UERD Test 9031) were also analyzed.

This test contained twice the areal charge density, but the

primacord charge was sandwiched between two 6.35 cm (2.5 in.)

foam sheets, and backed on one side by a steel plate. These data

can be compared with the calculational results of Figure 5.3

because the charge is symmetric, neglecting the steel plate. The

comparison of the calculated with the experimental results is

shown in Figure 5.4. The pressure gage set ranges were higher,

and the high pressure spike predicted by the calculation was as
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Fiqure 5.3 Calculated pressure history in water 1.07 rn
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separated from the water by a 6.35 cm
(2.5 in.) thick foamn-filled expansion cavity
(0.032 g/cm3, 2 lb/ft3).
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observed. Some evidence of shock reverberation within the HE/

foam cavity is also seen in the data, but the measured late-time

pressure generally drops faster than that calculated.

The above comparison shows that the initial shock could be

calculated reasonably well for only 0.2 ms from the time of maxi-

mum pressure. This comparison indicates that for times after the

initial pulse, the source region cannot be treated in 1D. Charge

edge effects and interface instabilities probably contribute

heavily to pressure damping in the source region at later times.

To achieve a pressure pulse with a 5 ms duration, they must be

minimized.

A few additional calculations were performed to see whether

an improved HE design could be generated. It was assumed that

the source region should be enclosed by steel (to eliminate edge

effects), that the charqe should be adequately decoupled from the

water (to minimize the initial shock), and that the explosive

gases should drive a steel plate (to minimize interface instabil-

ities). Since such a charge structure is initially enclosed, it

is possible to enhance the charge decoupling further by using an

air-filled rather than a foam-filled cavity. An initial design

is shown in Figure 5.5. Since the structure is basically sym-

metric about the plane of the charge, it was necessary to calcu-

late only half the problem. Figure 5.6 shows the result of a

planar 1D calculation, which decoupled the HE with a 3 cm

(1.2 in.) air (variable specific heat ratio EOS) gap and included

a 1.27 cm (0.5 in.) steel plate between the air and the water.

This pulse compares favorably with the ideal pulse shown in Fig-

ure 5.1, but the pressure attenuation with time is slightly

greater.
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1/2" THICK STEEL
PLATE, FREE TO
MOVE INTO WATER

10-20 ft AIR AIR WATER P(t)

DETONATOR
FEED-THRU PRIMACORD, 200 grain/ft

STRUNG VERTICALLY ON
2" SPACING, DETONATE
ALONG MIDPOINT LINE

1/2" STEEL

5-10"

Fiqure 5.5 Shock Block initial desian for improved
HE driver system.
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Figure 5.6 Calculated pressure history in water 1.07 m
(3.5 ft) in front of a HE slab charge de-
coupled from the water by a 3 cm (1.2 in.)
air gap and a 1.27 cm (0.5 in.) steel plate
(charge design as shown in Figure 5.5).
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The results of this effort indicate that a planar HE system

which will produce a fast risetime and a long duration pulse in

water is theoretically feasible. The amplitude of the pulse will

vary with time, due to the inevitable expansion of the source

cavity, so that an additional pressure source might be needed to

maintain a constant-amplitude pulse.
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SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

Physics International Company (PI) participated in a DNA-

sponsored Nuclear Weapon Effect (NWE) simulation program. The

purpose of the program, called the Shock Block Program, is to

generate a planar pressure pulse in water. The pulse is

characterized by a short risetime (- 0.1 ms) and a long pulse

width ( . 5 ms) at an amplitude of approximately 20 MPa. The

Underwater Explosions Research Division (UERD) of the David W.

Taylor Naval Ship Research and Development Center, Portsmouth,

Virginia, has major responsibility for testing various models

with a pressure pulse of the above type in a water environment.

PI had responsibility for investigating the feasibility of

using propellants, or HE and propellants, to produce the desired

underwater waveform. This responsibility included literature

surveys, finite-difference calculations, and small-scale testing,

but no full-scale testing of planar charge arrays of the size

required for model testing [approximately 6.1 m x 6.1 m (20 ft x

20 ft) or greater].

Early in the investigation it became clear that unconfined

conventional propellants alone would not produce the desired

risetime. An unconventional propellant was seriously considered

because calculations performed using its properties indicated

that it could produce the desired risetime; it was dropped

because of its excessive cost.
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Calculations indicated that HE/propellant systems could

deliver the desired pulse, if the initial HE shock was ignored.

Small-scale experiments with such sources revealed the propellant

did not produce a predictable absolute risetime (the time from

propellant initiation to significant gas generation was vari-

able), and also did not perform well when subjected to the HE

shock.

A confined propellar4 system utilizing a series of aluminum

tubes containing a powdered propellant designed by Physics

Applications, Inc. (PAI), was evaluated calculationally. The

results of that effort are in essential agreement with the UERD

interpretation of test results: the confined propellant system

generated a pressure pulse with an acceptable risetime and a long

duration (- 3 ms) at an average amplitude of about a factor of

four less than desired, but the pulse in the water was not planar

due to the slow burn velocity of the propellant along each

individual tube. The calculations showed that the planarity of

this system could be improved by igniting the propellant in a

greater number of places, and that excessive pressure spikes due

to nonuniform tube rupturing might be smoothed by providing a

foam expansion cavity.

Finally, a theoretical examination of HE designs tested in

the past by UERD indicated that the pulse duration is dominated

by shock wave effects, rarefactions from the charge edge, and

interface instabilities, possibly including cavitation. Further

calculations showed that the pulse shape could be significantly

improved by using an air-filled expansion cavity. It is strongly

suggested that another experimental series be performed at UERD

during the nLxt fiscal year using HE systems, and/or HE/PAl

propellant systems. The design tested should have the following

general properties:
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1. The explosive and/or propellant source should be
decoupled from the water by an air or low-density foam
cavity.

2. A steel sleeve should be welded around the charge edge
to minimize rarefactions.

3. The driver gas should be separated from the water by a
steel plate to prevent instabilities from developing.

Furthermore, any such experimental effort should be preceded by

1D and possibly 2D prediction calculations.
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